viernes, 20 de enero de 2012

wi fi


 
Cuando hablamos de WIFI nos referimos a una de las tecnologías de comunicación inalámbrica mediante ondas más utilizada hoy en día. WIFI, también llamada WLAN (wireless LAN, red inalámbrica) o estándar IEEE 802.11. WIFI no es una abreviatura de Wireless Fidelity, simplemente es un nombre comercial.


En la actualidad podemos encontrarnos con dos tipos de comunicación WIFI:
802.11b, que emite a 11 Mb/seg, y
802.11g, más rápida, a 54 MB/seg.
De hecho, son su velocidad y alcance (unos 100-150 metros en hardware asequible) lo convierten en una fórmula perfecta para el acceso a internet sin cables.
Para tener una red inalámbrica en casa sólo necesitaremos un punto de acceso, que se conectaría al módem, y un dispositivo WIFI que se conectaría en nuestro aparato. Existen terminales WIFI que se conectan al PC por USB, pero son las tarjetas PCI (que se insertan directamente en la placa base) las recomendables, nos permite ahorrar espacio físico de trabajo y mayor rapidez. Para portátiles podemos encontrar tarjetas PCMI externas, aunque muchos de los aparatos ya se venden con tarjeta integrada.
En cualquiera de los casos es aconsejable mantener el punto de acceso en un lugar alto para que la recepción/emisión sea más fluida. Incluso si encontramos que nuestra velocidad no es tan alta como debería, quizás sea debido a que los dispositivos no se encuentren adecuadamente situados o puedan existir barreras entre ellos (como paredes, metal o puertas).
El funcionamiento de la red es bastante sencillo, normalmente sólo tendrás que conectar los dispositivos e instalar su software. Muchos de los enrutadores WIFI (routers WIFI) incorporan herramientas de configuración para controlar el acceso a la información que se transmite por el aire.
Pero al tratarse de conexiones inalámbricas, no es difícil que alguien interceptara nuestra comunicación y tuviera acceso a nuestro flujo de información. Por esto, es recomendable la encriptación de la transmisión para emitir en un entorno seguro. En WIFI esto es posible gracias al WPA, mucho más seguro que su predecesor WEP y con nuevas características de seguridad, como la generación dinámica de la clave de acceso.
Para usuarios más avanzados existe la posibilidad de configurar el punto de acceso para que emita sólo a ciertos dispositivos. Usando la dirección MAC, un identificador único de los dispositivos asignados durante su construcción, y permitiendo el acceso solamente a los dispositivos instalados.
Por último, también merece la pena comentar la existencia de comunidades wireless que permiten el acceso gratuito a la red conectando con nodos públicos situados en diferentes puntos, por ejemplo, en tu ciudad. Esta tendencia aún no está consolidada y tiene un futuro impredecible, pues es muy probable que las compañías telefónicas se interpongan a esta práctica. Si te interesa este tema y quieres más información algunos sitios de interés serían valenciawireless o RedLibre.
Nuestros ojos son detectores que han ido evolucionando para  detectar ondas de luz visible. La luz visible es uno de los pocos tipos de radiación que puede penetrar nuestra atmósfera y que es posible detectar desde la superficie de la Tierra. Como hemos visto en la página Descubrimiento de los rayos infrarrojos, también existen otros tipos de luz (o radiación) que no podemos ver. De hecho, solamente podemos ver una parte muy pequeña de toda la gama de radiación llamada En las imágenes de arriba tenemos una vista óptica (en luz visible, izquierda) y una vista infrarroja (derecha) de la mano de una persona dentro de una bolsa de plástico. En la imagen en luz visible, la mano no puede ser vista. En la imagen infrarroja, sin embargo, el calor de la mano puede viajar a través de la bolsa y puede ser visto con una cámara infrarroja. La luz infrarroja puede pasar a través de muchos materiales a través de los cuales la luz visible no puede pasar. Sin embargo, al revés también es cierto. Hay algunos materiales que pueden pasar la luz visible pero no la luz infrarroja. ¡Observa los lentes del hombre! La luz infrarroja no puede viajar a través del vidrio. Como el calor del cuerpo del hombre no puede viajar a través de sus lentes, éstos últimos aparecen oscuros.
Debido a que la luz infrarroja puede viajar a través del humo espeso y la luz visible no lo puede hacer, las cámaras infrarrojas son usadas por los bomberos para encontrar gente y animales en edificios llenos de humo. El calor infrarrojo del cuerpo de la gente y de los animales de sangre caliente puede viajar a través del humo, ocasionando que ellos puedan ser observados claramente a través de una cámara infrarroja. Mucha gente y sus mascotas han sido salvadas por los bomberos usando cámaras infrarrojas. Como la luz infrarroja puede viajar a través de la niebla espesa, es muy útil tener cámaras infrarrojas en barcos y aviones para ayudar en la navegación.









A la izquierda tenemos una imagen infrarroja en blanco y negro mostrando a una persona atrapada en el humo espeso. Los bomberos usando cámaras infrarrojas pudieron encontrar y rescatar a esta persona. La imagen a la derecha muestra las vistas ópticas (en luz visible) e infrarrojas de un avión mientras trata de aterrizar en la niebla espesa. En luz visible, la pista de aterrizaje no puede verse. La vista infrarroja, en cambio, permite al piloto ver la pista y aterrizar con seguridad.
Las cámaras infrarrojas también son usadas por los satélites en el espacio para medir la temperatura de los océanos, para estudiar el clima de la Tierra durante el día y la noche, y para estudiar la luz infrarroja proveniente del espacio exterior.
Bluetoouth Su historia
Su nombre, procede del nombre del rey danés y noruego Harald Blåtand; especialmete, porque su traducción al inglés sería Harold Bluetooth, conocido por buen comunicador y por unificar las tribus noruegas, suecas y danesas.
Exactamente, en el año 1994, la compañía Ericsson inició diversas investigaciones con el objetivo expreso de estudiar la viabilidad de la existencia de una nueva interfaz (de bajo consumo y costo), entre diversos aparatos, entre ellos, teléfonos móviles u otros dispositivos.
Con todo ello, en el año 1999 se creó el SIG de Bluetooth (Special Interest Group), que consistía, en sí, en la “unión” de diversas empresas (entre ellas, Ericsson, Intel, Nokia, Toshiba e IBM), e incorporándose meses después otras tantas (como Microsoft, 3COM, Motorola y Lucent).
Se consiguió que los estudios avanzaran, y que los proyectos fueran de por sí una verdadera y auténtica realidad.
En qué consiste
La especificación de Bluetooth definiría un canal de comunicación de máximo 720 kb/s con un rango óptimo de 10 metros (opcionalmente 100 metros con repetidores). Su frecuencia de tráfico, con la que trabaja, se encuentra en el rango de 2,4 a 2,48 GHz con amplio espectro y saltos de frecuencia con posibilidad de transmitir en Full Duplex con un máximo de 1600 saltos/s, los cuales se dan entre un total de 79 frecuencias con intervalos de 1Mhz.
Por todo, la potencia de salida para transmitir a una distancia máxima de 10 metros es de 0 dbm (1 mW), mientras que, en sí, la versión de largo alcance transmite entre los 20 y 30 dBm (entre 100 mW y 1 W).
¿De qué se compone el dispositivo Bluetooth?
Fundamentalmente, de dos partes muy importantes: en primer lugar, un dispositivo de radio (encargado de transmitir y modular la señal), y el controlador digital (compuesto por un procesador de señales digitales, una CPU y de los diferentes interfaces con el dispositivo anfitrión.
Por todas estas características, el Bluetooth es uno de las aplicaciones que buscamos ante la compra de cualquier móvil, impresora, portátil, ordenador… Porque la comodidad que nos posibilita es máxima, una vía inalámbrica a través de la cuál puedes pasar información, datos, imágenes sin necesidad de ningún tipo de cable, a una determinada distancia y sin a penas gastar tiempo en el proceso.
El Bluetooth es el sistema que buscamos porque en cuanto lo pruebas en uno de los aparatos y ves la sencillez de su uso, es algo que deseas tener para cada uno de los artículos tecnológicos que quieras adquirir.
A continuación os dejamos un vídeo explicativo sobre el bluetooth para que podáis ver de manera más interactiva todos las posibilidades que te ofrece.






miércoles, 30 de noviembre de 2011

ELEMENTOS DE MEMORIA Y FLIP-FLOP


ELEMENTOS DE MEMORIA Y FLIP-FLOPS
La electrónica moderna usa electrónica digital para realizar muchas funciones.
Aunque los circuitos electrónicos podrían parecer muy complejos, en realidad se construyen de un número muy grande de circuitos muy simples. En un circuito lógico digital se transmite información binaria (ceros y unos) entre estos circuitos y se consigue un circuito complejo con la combinación de bloques de circuitos simples.
La información binaria se representa en la forma de: (ver gráficos arriba)
- "0" ó "1",
- "abierto" ó "cerrado" (interruptor),
- "On" y "Off",
- "falso" o "verdadero", etc.

Los circuitos lógicos se pueden representar de muchas maneras. En los circuitos de los gráficos anteriores la lámpara puede estar encendida o apagada ("on" o "off"), dependiendo de la posición del interruptor. (apagado o encendido)
Los posibles estados del interruptor o interruptores que afectan un circuito se pueden representar en una tabla de verdad.
Circuitos Biestables - Parte I
Los circuitos biestables son muy conocidos y empleados como elementos de memoria, ya que son capaces de almacenar un bit de información. En general, son conocidos como Flip-Flop y poseen dos estados estables, uno a nivel alto (1 lógico) y otro a nivel bajo (cero lógico
Perdón, me estaba olvidando de un pequeño detalle, es posible que al presionar el pulsador se produzcan rebotes eléctricos, es como haberlo presionado varias veces, y sí... los resultados serán totalmente inesperados, así que lo de los cablecitos para probar estos circuitos no nos servirán de mucho, es conveniente utilizar un pulso de reloj para realizar estas pruebas

Por lo general un Flip-Flop dispone de dos señales de salida, una con el mismo valor de la entrada y otra con la negación del mismo o sea su complemento.

Primero lo básico, como siempre, y luego lo enredamos un poco más.



FLIP FLOP BÁSICO RS
Se puede construir uno fácilmente utilizando dos compuertas NAND o NOR conectadas de tal forma de realimentar la entrada de una con la salida de la otra, quedando libre una entrada de cada compuerta, las cuales serán utilizadas para control Set y Reset...


             
Las resistencias R1 y R2 utilizadas en ambos casos son de 10k y las puse solamente para evitar estados indeterminados, observa el circuito con compuertas NOR... Un nivel alto aplicado en Set, hace que la salida negada ~Q sea 0 debido a la tabla de verdad de la compuerta NOR, al realimentar la entrada de la segunda compuerta y estando la otra a masa, la salida normal Q será 1. Ahora bien, esta señal realimenta la primer compuerta, por lo tanto no importan los rebotes, y el FF se mantendrá en este estado hasta que le des un pulso positivo a la entrada Reset

Conclusión: El biestable posee dos entradas Set y Reset que trabajan con un mismo nivel de señal, provee dos salidas, una salida normal Q que refleja la señal de entrada Set y otra ~Q que es el complemento de la anterior.

Si comparas los dos flip-flop representados en el gráfico, verás que sólo difieren en los niveles de señal que se utilizan, debido a la tabla de verdad que le corresponde a cada tipo de compuerta.
FLIP FLOP RS - Controlado por un pulso de reloj:
En este caso voy a utilizar el ejemplo de las compuertas NAND, pero le agregaremos dos compuertas mas, y uniremos la entrada de cada una a una señal de Reloj...


 
Lo dicho mas arriba, necesitamos un generador de pulsos (Astable) para conectarlo en la entrada Clock, una vez lo tenemos pasamos a interpretar el circuito...

Si pones un 0 en Set y la entrada Clock está a 1 ocurrirá todo lo que se describe en el esquema anterior, veamos que ocurre cuando Clock pasa a 0...





el FF se mantiene sin cambios en Q y ~Q. Fíjate que ahora no importa el estado de Set y Reset, esto se debe a su tabla de verdad (basta que una de sus entradas sea 0 para que su salida sea 1) por lo tanto Set y Reset quedan inhabilitadas.

Es decir que se leerán los niveles de Set y Reset sólo cuando la entrada Clock sea 1.

NOTA 1: El primer circuito que vimos (Flip-Flop simple) es llamado Flip-Flop Asíncrono ya que puede cambiar el estados de sus salidas en cualquier momento, y sólo depende de las entradas Set y Reset.

NOTA 2: El segundo circuito es controlado por una entrada Clock y es llamado Flip-Flop Síncrono ya que el cambio de estado de sus salidas esta sincronizado por un pulso de reloj que realiza la lectura de las entradas en un determinado instante.

 









CIRCUITO LOGICO


¿Qué es un circuito lógico?

Circuito lógico es aquel que maneja la información en forma de "1" y "0", dos niveles lógicos de voltaje fijos.
"1" nivel alto o "high" y "0" nivel bajo o "low".
Los circuitos lógicos están compuestos por elementos digitales como la compuerta AND (Y), compuerta OR (O), compuerta NOT (NO)......y combinaciones poco o muy complejas de los circuitos antes mencionados. Estas combinaciones dan lugar a otros tipos de elementos digitales como los compuertas, entre otros.
- compuerta nand (No Y)
- compuerta nor (No O)
- compuerta or exclusiva (O exclusiva)
- mutiplexores o multiplexadores
- demultiplexores o demultiplexadores
- decodificadores

- codificadores
- memorias
- flip-flops
- microprocesadores
- microcontroladores
- etc.


             



CIRCUITOS ARITMETICOS


Circuitos Aritméticos

Introducción
Los circuitos integrados más representativos para la realización de operaciones aritméticas básicas tales como la suma y la comparación. Adicionalmente, se analiza una ALU en circuito integrado con la cual se pueden llevar a cabo una variedad de operaciones de lógica y aritmética.
La forma mas simple de realizar una operación aritmética electrónicamente, es usando un circuito llamado semi-sumado (Haft Adder). Este dispositivo permite que sean aplicados 2 bits de entradas (A,B) para producir dos salidas: uno correspondiente a resultado de la suma (S) y la otra correspondiente a acarreo (C) según se muestra en la tabla Nº1.



A
B
S
C
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1



Como se puede notar, la salido S es el resultado de una EX-OR entre A y B como entradas: por otro lado C es el resultado de una AND entre las mismas entradas. En la figura Nº1 se muestra el circuito de semi-sumador. Este semi-sumador presenta la limitación de que no posee uno entrada para el acarreo de la etapa previa, en caso de que desee sumar mas de 2 bits. Se debe recurrir entonces a sumador total b sumador completo (Full Adder). Este tipo de circuito acepta 3 bits de entrada por separado, llamados sumando, consumando y acarreo de entrada A, B y Cin respectivamente, mientras que las salidas son S y Cout.














DECODIFICADOR


El decodificador

El decodificador es un dispositivo que acepta una entrada digital codificada en binario y activa una salida. Este dispositivo tiene varias salidas, y se activará aquella que establezca el código aplicado a la entrada.
Con un código de n bits se pueden encontrar 2n posibles combinaciones. Si se tienen 3 bits (3 entradas) serán posibles 23 = 8 combinaciones.
Una combinación en particular activará sólo una salida.
Por ejemplo: Para activar la salida Q2 hay que poner en la entrada el equivalente al número 2 en binario (102).

En un decodificador de 2 a 4 (se tienen 2 pines o patitas de entrada y 4 pines o patitas de salida). En la entrada se pone el código en binario (00, 01, 10, 11), que hará que se active sólo una salida de las cuatro posibles.
Ver en el siguiente diagrama una representación de un decodificador de 2 a 4

 

Observando con atención el gráfico se puede ver que en la entrada E y en todas las salidas Q, hay una pequeña esfera o bolita.
Esta esfera indica que la entrada (en el caso de E) y las salidas, son activas en bajo.
Con esto se quiere decir que cuando se pone A0 = 0 y A1 = 0 y estamos escogiendo la salida Q0, ésta tendrá un nivel de voltaje bajo, mientras que todas las otras salidas (Q1, Q2 y Q3) estarán en nivel alto.
De igual manera cuando la entrada E está en nivel bajo (activo en bajo), el decodificador está habilitado. Si está en nivel alto, el decodificador está inhabilitado y ninguna entrada en A0 y A1 tendrá efecto. Ver la tabla de verdad siguiente:

 TABLA DE VERDAD DEL DECODIFICADOR





También existen decodificadores de 3 a 8 ( 3 entradas a 8 salidas), de 4 a 16 (4 entradas a 16 salidas), etc.